Tractability and Approximability of Maximal Strip Recovery
نویسندگان
چکیده
An essential task in comparative genomics is usually to decompose two or more genomes into synteny blocks, that is, segments of chromosomes with similar contents. In this paper, we study the Maximal Strip Recovery problem (MSR) [Zheng et al. 07], which aims at finding an optimal decomposition of a set of genomes into synteny blocks, amidst possible noise and ambiguities. We present a panel of new or improved FPT and approximation algorithms for the MSR problem and its variants. Our main results include the first FPT algorithm for the variant δ-gap-MSR-d, an FPT algorithm for CMSR-d and δ-gap-CMSR-d running in time O(2.360poly(nd)), where k is the number of markers or genes considered as erroneous, and a (d+ 1.5)-approximation algorithm for CMSR-d and δ-gap-CMSR-d.
منابع مشابه
Approximability and Fixed-Parameter Tractability for the Exemplar Genomic Distance Problems
In this paper, we present a survey of the approximability and fixed-parameter tractability results for some Exemplar Genomic Distance problems. We mainly focus on three problems: the exemplar breakpoint distance problem and its complement (i.e., the exemplar non-breaking similarity or the exemplar adjacency number problem), and the maximal strip recovery (MSR) problem. The following results hol...
متن کاملOn the Tractability of Maximal Strip Recovery
Given two genomic maps G and H represented by a sequence of n gene markers, a strip (syntenic block) is a sequence of distinct markers of length at least two which appear as subsequences in the input maps, either directly or in reversed and negated form. The problem Maximal Strip Recovery (MSR) is to find two subsequences G' and H' of G and H, respectively, such that the total length of disjoin...
متن کاملExact and approximation algorithms for the complementary maximal strip recovery problem
Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as G ∗ 1 and G∗ 2 , can be partitioned into the same set of maximal substrings of length greater than or equal to two. Such substrings can occur in the reversal and n...
متن کاملAn Improved Approximation Algorithm for the Complementary Maximal Strip Recovery Problem
Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as G ∗ 1 and G ∗ 2, can be partitioned into the same set of maximal strips, which are common substrings of length greater than or equal to two. The complementary maxi...
متن کاملApproximability of Integer Programming with Generalised Constraints
We study a family of problems, called Maximum Solution, where the objective is to maximise a linear goal function over the feasible integer assignments to a set of variables subject to a set of constraints. When the domain is Boolean (i.e. restricted to {0, 1}), the maximum solution problem is identical to the well-studied Max Ones problem, and the approximability is completely understood for a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 440-441 شماره
صفحات -
تاریخ انتشار 2011